Passage of Magnetic Tat-Conjugated Fe3O4@SiO2 Nanoparticles Across In Vitro Blood-Brain Barrier

نویسندگان

  • Xueqin Zhao
  • Ting Shang
  • Xiaodan Zhang
  • Ting Ye
  • Dajin Wang
  • Lei Rei
چکیده

Delivery of diagnostic or therapeutic agents across the blood-brain barrier (BBB) remains a major challenge of brain disease treatment. Magnetic nanoparticles are actively being developed as drug carriers due to magnetic targeting and subsequently reduced off-target effects. In this paper, we developed a magnetic SiO2@Fe3O4 nanoparticle-based carrier bound to cell-penetrating peptide Tat (SiO2@Fe3O4-Tat) and studied its fates in accessing BBB. SiO2@Fe3O4-Tat nanoparticles (NPs) exhibited suitable magnetism and good biocompatibility. NPs adding to the apical chamber of in vitro BBB model were found in the U251 glioma cells co-cultured at the bottom of the Transwell, indicating that particles passed through the barrier and taken up by glioma cells. Moreover, the synergistic effects of Tat and magnetic field could promote the efficient cellular internalization and the permeability across the barrier. Besides, functionalization with Tat peptide allowed particles to locate into the nucleus of U251 cells than the non-conjugated NPs. These results suggest that SiO2@Fe3O4-Tat NPs could penetrate the BBB through the transcytosis of brain endothelial cells and magnetically mediated dragging. Therefore, SiO2@Fe3O4-Tat NPs could be exploited as a potential drug delivery system for chemotherapy and gene therapy of brain disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain-Targeted Delivery of Trans-Activating Transcriptor-Conjugated Magnetic PLGA/Lipid Nanoparticles

Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic gui...

متن کامل

Fe3O4/SiO2/CeO2 Core-Shell Magnetic Nanoparticles as Photocatalyst

The Fe3O4/CeO2 magnetic photocatalyst was prepared by coating directly onto the surface of magnetic Fe3O4 particles. However a direct contact of CeO2 onto the surface of magnetic Fe3O4 particles presented unfavorable heterojunction, thus the SiO2 barrier layer between magnetic Fe3O4 and CeO2 was prepared as a core-shell stucture to reduce the negative effect by combining three steps of the hydr...

متن کامل

Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications

Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...

متن کامل

Synthesis of size-controlled Fe3O4@SiO2 magnetic nanoparticles for nucleic acid analysis.

We present a systematic study on the preparation, characteration and potential application of Fe3O4 and Fe3O4@SiO2 nanoparticles. Fe3O4 nanoparticles of controllable diameters were successfully synthesized by solvothermal system with tuning pH. The magnetic properties of nanoparticles were measured by vibration sample magnetometer. Fe3O4@ SiO2 nanoparticles were obtained via classic Stöber proc...

متن کامل

Cleavable ester linked magnetic nanoparticles for labeling of solvent exposed primary amine groups of peptides/proteins

Covalent labeling of solvent exposed amino acid residues using chemical reagents/crosslinkers followed by mass spectrometric analysis can be used to determine the solvent accessible amino acids of a protein. A variety of chemical reagents containing cleavable bonds were developed to label abundantly found lysine residues on the surface of protein. To achieve efficient separation of labeled pept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016